Senin, 11 April 2011

asam sitrat


Siklus asam sitrat
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
http://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Citric_acid_cycle_with_aconitate_2.svg/450px-Citric_acid_cycle_with_aconitate_2.svg.png
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Siklus asam sitrat
Siklus asam sitrat[1] (bahasa Inggriscitric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle, Szent-Györgyi-Krebs cycle) adalah sederetan jenjang reaksi metabolisme pernafasan selular yang terpacu enzim yang terjadi setelah proses glikolisis, dan bersama-sama merupakan pusat dari sekitar 500 reaksi metabolisme yang terjadi di dalam sel.[2] Lintasan katabolisme akan menuju pada lintasan ini dengan membawa molekul kecil untuk diiris guna menghasilkan energi, sedangkan lintasan anabolisme merupakan lintasan yang bercabang keluar dari lintasan ini dengan penyediaan substrat senyawa karbon untuk keperluan biosintesis.
Metabolom dan jenjang reaksi pada siklus ini merupakan hasil karya Albert Szent-Györgyi and Hans Krebs.
Pada sel eukariota, siklus asam sitrat terjadi pada mitokondria, sedangkan pada organisme aerob, siklus ini merupakan bagian dari lintasan metabolisme yang berperan dalam konversi kimiawi terhadap karbohidratlemak danprotein - menjadi karbon dioksidaair, dalam rangka menghasilkan suatu bentuk energi yang dapat digunakan. Reaksi lain pada lintasan katabolisme yang sama, antara lain glikolisisoksidasi asam piruvat dan fosforilasi oksidatif.
Produk dari siklus asam sitrat adalah prekursor bagi berbagai jenis senyawa organikAsam sitrat merupakan prekursor dari kolesterol dan asam lemakasam ketoglutarat-alfa merupakan prekursor dari asam glutamatpurinadan beberapa asam aminosuksinil-KoA merupakan prekursor dari heme dan klorofilasam oksaloasetat merupakan prekursor dari asam aspartatpurinapirimidina dan beberapa asam amino.[
Sekilas proses
Siklus asam sitrat dimulai dengan satu molekul asetil-KoA bereaksi dengan satu molekul H2O, melepaskan guguskoenzim-A, dan mendonorkan dua atom karbon yang tersisa dalam bentuk gugus asetil kepada asam oksaloasetatyang memiliki molekul dengan empat atom karbon, hingga menghasilkan asam sitrat dengan enam atom karbon

Produk
Reaksi
Keterangan
1
Setelah enzim sitrat sintase melepaskan satu ion H+ dari molekul CH3 gugus asetil dari asetil-KoA, molekul CH2- pada gugus asetil tersebut akan bereaksi dengan asam oksaloasetat membentuk metabolit S-sitril-KoA. Reaksi hidrolisis yang terjadi selanjutnya pada gugus koenzim-A akan mendorong reaksi hingga menghasilkan tiga jenis produk.
2
Reaksi isomerisasi terjadi dengan dua tahap, enzim asonitase akan melepaskan gugus air dari asam sitrat membentuk metabolitcis-Asonitat, kemudian terjadi penambahan kembali molekul air dengan pergeseran lokasi gugus hidroksil dan menghasilkanisomer asam sitrat.
3
4
Enzim isositrat dehidrogenase bersama dengan koenzim NAD+ akan mengubah gugus karboksil menjadi gugus karbonil, membentuk senyawa intermediat yang disebut oksalosuksinat. Eksitasi oleh ion H+ akan menyebabkan oksalosuksinat melepaskan gugus COO- yang tidak stabil dan membentuk senyawa CO2.
5
6
Suksinil-KoA
+ NADH + H+
+ CO2
Kompleks dehidrogenase ketoglutarat-alfa mirip kompleks piruvat dehidrogenase yang menjadi enzim pada transformasi asam piruvat menjadi asetil-KoA. Bersama dengan koenzim NAD+ akan mempercepat oksidasi yang membentuk koenzim baru, disebut suksinil-KoA, yang memiliki ikatan tioester antara koenzim-A dengan gugus suksinil.
7
Suksinil-KoA
GDP + Pi
+ H2O
Senyawa Pi akan menggantikan gugus CoA pada suksinat, kemudian didonorkan ke GDP untuk membentuk GTP. Pada bakteridan tumbuhan, gugus Pi akan didonorkan ke ADP guna menghasilkan ATP.
8
Suksinat
+ FAD
Fumarat
+ FADH2
Complex II.svg
Koenzim FAD akan menarik dua atom hidrogen dari suksinat. Reaksi ini tidak terjadi di dalam matriks mitokondria, tetapi terjadi pada antarmuka antara matriks mitokondria dan rantai transpor elektron yang disebut suksinat dehidrogenase yang melintang pada membran mitokondria bagian dalam, enzim ini sering juga disebut "kompleks II".
9
Fumarat
+ H2O
Reaksi penambahan molekul air pada fumarat akan menjadi gugus hidroksil pada senyawa baru.
10
Malat
+ NAD+
Oksaloasetat
+ NADH + H+
Reaksi oksidasi yang terakhir akan mengubah gugus hidroksil menjadi karbonil dan menghasilkan senyawa pertama siklus sitrat, yaitu asam oksaloasetat.

 asam amino

Pendahuluan
Kira-kira 75% asam amino digunakan untuk sintesis protein. Asam-asam amino dapat diperoleh dari protein yang kita makan atau dari hasil degradasi protein di dalam tubuh kita. Degradasi ini merupakan proses kontinu. Karena protein di dalam tubuh secara terus menerus diganti (protein turnover). Contoh dari protein turnover, tercantum pada tabel berikut.
Contoh protein turnover.
Protein
Turnover rate (waktu paruh)
Enzim
Di dalam hati
Di dalam plasma
Hemoglobin
Otot
Kolagen

7-10 menit
10 hari
10 hari
120 hari
180 hari
1000 hari


Asam-asam amino juga menyediakan kebutuhan nitrogen untuk:
-    Struktur basa nitrogen DNA dan RNA
-    Heme dan struktur lain yang serupa seperti mioglobin, hemoglobin, sitokrom, enzim dll.
-    Asetilkolin dan neurotransmitter lainnya.
-    Hormon dan fosfolipid
Selain menyediakan kebutuhan nitrogen, asam-asam amino dapat juga digunakan sebagai sumber energi jika nitrogen dilepas.

Jalur metabolik utama dari asam amino
Jalur metabolik utama dari asam-asam amino terdiri atas pertama, produksi asam amino dari pembongkaran protein tubuh, digesti protein diet serta sintesis asam amino di hati. Kedua, pengambilan nitrogen dari asam amino. Sedangkan ketiga adalah katabolisme asam amino menjadi energi melalui siklus asam serta siklus urea sebagai proses pengolahan hasil sampingan pemecahan asam amino. Keempat adalah sintesis protein dari asam-asam amino.

Jalur-jalur metabolik utama asam amino

Katabolisme asam amino

Asam-asam amino tidak dapat disimpan oleh tubuh. Jika jumlah asam amino berlebihan atau terjadi kekurangan sumber energi lain (karbohidrat dan protein), tubuh akan menggunakan asam amino sebagai sumber energi. Tidak seperti karbohidrat dan lipid, asam amino memerlukan pelepasan gugus amin. Gugus amin ini kemudian dibuang karena bersifat toksik bagi tubuh.
Ada 2 tahap pelepasan gugus amin dari asam amino, yaitu:
1.   Transaminasi
Enzim aminotransferase memindahkan amin kepada α-ketoglutarat menghasilkan glutamat atau kepada oksaloasetat menghasilkan aspartat
2.   Deaminasi oksidatif
Pelepasan amin dari glutamat menghasilkan ion amonium


Contoh reaksi transaminasi. Perhatikan alanin mengalami transaminasi menjadi glutamat. Pada reaksi ini dibutuhkan enzim alanin aminotransferase.

Glutamat juga dapat memindahkan amin ke rantai karbon lainnya, menghasilkan asam amino baru.

Contoh reaksi deaminasi oksidatif. Perhatikan glutamat mengalami deaminasi menghasilkan amonium (NH4+). Selanjutnya ion amonium masuk ke dalam siklus urea.


Ringkasan skematik mengenai reaksi transaminasi dan deaminasi oksidatif

Setelah mengalami pelepasan gugus amin, asam-asam amino dapat memasuki siklus asam sitrat melalui jalur yang beraneka ragam.


Tempat-tempat masuknya asam amino ke dalam sikulus asam sitrat untuk produksi energi

Gugus-gugus amin dilepaskan menjadi ion amonium (NH4+) yang selanjutnya masuk ke dalam siklus urea di hati. Dalam siklus ini dihasilkan urea yang selanjutnya dibuang melalui ginjal berupa urin. Proses yang terjadi di dalam siklus urea digambarkan terdiri atas beberapa tahap yaitu:
1.   Dengan peran enzim karbamoil fosfat sintase I, ion amonium bereaksi dengan CO2 menghasilkan karbamoil fosfat. Dalam raksi ini diperlukan energi dari ATP
2.   Dengan peran enzim ornitin transkarbamoilase, karbamoil fosfat bereaksi dengan L-ornitin menghasilkan L-sitrulin dan gugus fosfat dilepaskan
3.   Dengan peran enzim argininosuksinat sintase, L-sitrulin bereaksi dengan L-aspartat menghasilkan L-argininosuksinat. Reaksi ini membutuhkan energi dari ATP
4.   Dengan peran enzim argininosuksinat liase, L-argininosuksinat dipecah menjadi fumarat dan L-arginin
5.   Dengan peran enzim arginase, penambahan H2O terhadap L-arginin akan menghasilkan L-ornitin dan urea.


Tahapan-tahapan proses yang terjadi di dalam siklus urea
Sintesis asam amino
Semua jaringan memiliki kemampuan untuk men-sintesis asam amino non esensial, melakukan remodeling asam amino, serta mengubah rangka karbon non asam amino menjadi asam amino dan turunan lain yang mengandung nitrogen. Tetapi, hati merupakan tempat utama metabolisme nitrogen. Dalam kondisi surplus diet, nitrogen toksik potensial dari asam amino dikeluarkan melalui transaminasi, deaminasi dan pembentukan urea. Rangka karbon umumnya diubah menjadi karbohidrat melalui jalur glukoneogenesis, atau menjadi asam lemak melalui jalur sintesis asam lemak. Berkaitan dengan hal ini, asam amino dikelompokkan menjadi 3 kategori yaitu asam amino glukogenik, ketogenik serta glukogenik dan ketogenik.
 Asam amino glukogenik adalah asam-asam amino yang dapat masuk ke jalur produksi piruvat atau intermediat siklus asam sitrat seperti α-ketoglutarat atau oksaloasetat. Semua asam amino ini merupakan prekursor untuk glukosa melalui jalur glukoneogenesis. Semua asam amino kecuali lisin dan leusin mengandung sifat glukogenik. Lisin dan leusin adalah asam amino yang semata-mata ketogenik, yang hanya dapat masuk ke intermediat asetil KoA atau asetoasetil KoA
Sekelompok kecil asam amino yaitu isoleusin, fenilalanin, threonin, triptofan, dan tirosin bersifat glukogenik dan ketogenik. Akhirnya, seharusnya kita kenal bahwa ada 3 kemungkinan penggunaan asam amino. Selama keadaan kelaparan pengurangan rangka karbon digunakan untuk menghasilkan energi, dengan proses oksidasi menjadi CO2 dan H2O.
Dari 20 jenis asam amino, ada yang tidak dapat disintesis oleh tubuh kita sehingga harus ada di dalam makanan yang kita makan. Asam amino ini dinamakan asam amino esensial. Selebihnya adalah asam amino yang dapat disintesis dari asam amino lain. Asam amino ini dinamakan asam amino non-esensial.
Asam amino non-esensial
Alanine, Asparagine, Aspartate, Cysteine, Glutamate, Glutamine, Glycine, Proline, Serine, Tyrosine
Asam amino esensial
Arginine*, Histidine, Isoleucine, Leucine, Lysine, Methionine*, Phenylalanine*, Threonine, Tyrptophan, Valine

Biosintesis glutamat dan aspartat
Glutamat dan aspartat disintesis dari asam α-keto dengan reaksi tranaminasi sederhana. Katalisator reaksi ini adalah enzim glutamat dehidrogenase dan selanjutnya oleh aspartat aminotransferase, AST.
Reaksi biosintesis glutamat
Aspartat juga diturunkan dari asparagin dengan bantuan asparaginase. Peran penting glutamat adalah sebagai donor amino intraseluler utama untuk reaksi transaminasi. Sedangkan aspartat adalah sebagai prekursor ornitin untuk siklus urea.
Biosintesis alanin
Alanin dipindahkan ke sirkulasi oleh berbagai jaringan, tetapi umumnya oleh otot. Alanin dibentuk dari piruvat. Hati mengakumulasi alanin plasma, kebalikan transaminasi yang terjadi di otot dan secara proporsional meningkatkan produksi urea. Alanin dipindahkan dari otot ke hati bersamaan dengan transportasi glukosa dari hati kembali ke otot. Proses ini dinamakan siklus glukosa-alanin. Fitur kunci dari siklus ini adalah bahwa dalam 1 molekul, alanin, jaringan perifer mengekspor piruvat dan amonia ke hati, di mana rangka karbon didaur ulang dan mayoritas nitrogen dieliminir.
Ada 2 jalur utama untuk memproduksi alanin otot yaitu:
1.   Secara langsung melalui degradasi protein
2.   Melalui transaminasi piruvat dengan bantuan enzim alanin transaminase, ALT (juga dikenal sebagai serum glutamat-piruvat transaminase, SGPT).
Glutamat + piruvat ßàα-ketoglutarat + alanin

Siklus glukosa-alanin
Biosintesis sistein
Sulfur untuk sintesis sistein berasal dari metionin. Kondensasi dari ATP dan metionin dikatalisis oleh enzim metionin adenosiltransfrease menghasilkan S-adenosilmetionin (SAM).
Biosintesis S-adenosilmetionin (SAM)
SAM merupakan precursor untuk sejumlah reaksi transfer metil (misalnya konversi norepinefrin menjadi epinefrin). Akibat dari tranfer metil adalah perubahan SAM menjadi S-adenosilhomosistein. S-adenosilhomosistein selanjutnya berubah menjadi homosistein dan adenosin dengan bantuan enzim adenosilhomosisteinase. Homosistein dapat diubah kembali menjadi metionin oleh metionin sintase.
Reaksi transmetilasi melibatkan SAM sangatlah penting, tetapi dalam kasus ini peran S-adenosilmetionin dalam transmetilasi adalah sekunder untuk produksi homosistein (secara esensial oleh produk dari aktivitas transmetilase). Dalam produksi SAM, semua fosfat dari ATP hilang: 1 sebagai Pi dan 2 sebagai Ppi. Adenosin diubah menjadi metionin bukan AMP.
Dalam sintesis sistein, homosistein berkondensasi dengan serin menghasilkan sistationin dengan bantuan enzim sistationase. Selanjutnya dengan bantuan enzim  sistationin liase sistationin diubah menjadi sistein dan α-ketobutirat. Gabungan dari 2 reaksi terakhir ini dikenal sebagai trans-sulfurasi.
Peran metionin dalam sintesis sistein

Biosintesis tirosin
Tirosin diproduksi di dalam sel dengan hidroksilasi fenilalanin. Setengah dari fenilalanin dibutuhkan untuk memproduksi tirosin. Jika diet kita kaya tirosin, hal ini akan mengurangi kebutuhan fenilalanin sampai dengan 50%.
 Fenilalanin hidroksilase adalah campuran fungsi oksigenase: 1 atom oksigen digabungkan ke air dan lainnya ke gugus hidroksil dari tirosin. Reduktan yang dihasilkan adalah tetrahidrofolat kofaktor tetrahidrobiopterin, yang dipertahankan dalam status tereduksi oleh NADH-dependent enzyme dihydropteridine reductase (DHPR).
Biosintesis tirosin dari fenilalanin

Biosintesis ornitin dan prolin
Glutamat adalah prekursor ornitin dan prolin. Dengan glutamat semialdehid menjadi intermediat titik cabang menjadi satu dari 2 produk atau lainnya. Ornitin bukan salah satu dari 20 asam amino yang digunakan untuk sintesis protein. Ornitin memainkan peran signifikan sebagai akseptor karbamoil fosfat dalam siklus urea. Ornitin memiliki peran penting tambahan sebagai prekursor untuk sintesis poliamin. Produksi ornitin dari glutamat penting ketika diet arginin sebagai sumber lain untuk ornitin terbatas.
Penggunaan glutamat semialdehid tergantung kepada kondisi seluler. Produksi ornitin dari semialdehid melalui reaksi glutamat-dependen transaminasi. ketika konsentrasi arginin meningkat, ornitin didapatkan dari siklus urea ditambah dari glutamat semialdehid yang menghambat reaksi aminotransferase. Hasilnya adalah akumulasi semialdehid. Semialdehid  didaur secara spontan menjadi Δ1pyrroline-5-carboxylate yang kemudian direduksi menjadi prolin oleh NADPH-dependent reductase.
Biosintesis serin
Jalur utama untuk serin dimulai dari intermediat glikolitik 3-fosfogliserat. NADH-linked dehidrogenase mengubah 3-fosfogliserat menjadi sebuah asam keto yaitu 3-fosfopiruvat, sesuai untuk transaminasi subsekuen. Aktivitas aminotransferase  dengan glutamat sebagai donor menghasilkan 3-fosfoserin, yang diubah menjadi serin oleh fosfoserin fosfatase.
Biosintesis glisin
Jalur utama untuk glisin adalah 1 tahap reaksi yang dikatalisis oleh serin hidroksimetiltransferase. Reaksi ini melibatkan transfer gugus hidroksimetil dari serin untuk kofaktor tetrahidrofolat (THF), menghasilkan glisin dan N5, N10-metilen-THF.
Biosintesis aspartat, asparagin, glutamat dan glutamin
Glutamat disintesis dengan aminasi reduktif α-ketoglutarat yang dikatalisis oleh glutamat dehidrogenase yang merupakan reaksi nitrogen-fixing. Glutamat juga dihasilkan oleh reaksi aminotranferase, yang dalam hal ini nitrogen amino diberikan oleh sejumlah asam amino lain. Sehingga, glutamat merupakan kolektor umum nitrogen amino.
Aspartat dibentuk dalam reaksi transaminasi yang dikatalisis oleh aspartat transaminase, AST. Reaksi ini menggunakan analog asam α-keto aspartat, oksaloasetat, dan glutamat sebagai donor amino. Aspartat juga dapat dibentuk dengan deaminasi asparagin yang dikatalisis oleh asparaginase.
Asparagin sintetase dan glutamin sintetase mengkatalisis produksi asparagin dan glutamin dari asam α-amino yang sesuai. Glutamin dihasilkan dari glutamat dengan inkorporasi langsung amonia dan ini merupakan reaksi fixing nitrogen lain. Tetapi asparagin terbentuk oleh reaksi amidotransferase.